Generalized Solution Techniques for Preference-Based
Constrained Optimization with CP-nets

James C. Boerkoel Jr.

Edmund H. Durfee

Keith Purrington

Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109 USA
{boerkoel,durfee,purringk}@umich.edu

ABSTRACT

Computational agents can assist people by guiding their decisions
in ways that achieve their goals while also adhering to constraints
on their actions. Because some domains are more naturally
modeled by representing preferences and constraints separately,
we seek to develop efficient techniques for solving such
decoupled constrained optimization problems. This paper
describes a parameterized formulation for decoupled constrained
optimization problems that subsumes the state-of-the-art
algorithm of Boutilier et al., representing a wider family of
alternative algorithms. We empirically examine notable members
of this family to highlight the spaces of decoupled constrained
optimization problems for which each excels, highlight
fundamental relationships between different algorithmic
variations, and use these insights to create and evaluate novel
hybrids of these algorithms that a cognitive assistant agent can use
to flexibly trade off solution quality with computational time.

Categories and Subject Descriptors
G.1.6 [Artificial Intelligence]: Problem Solving,
Methods, and Search

Control

General Terms
Theory, Algorithms, Performance

Keywords

Decoupled Constrained Optimization Problems, CP-nets

1. INTRODUCTION

Semi-autonomous agents can assist users with cognitive tasks like
configuring products for an online shopper, scheduling meetings
for a busy executive, or helping cognitively impaired individuals
enjoy a greater degree of independence [6]. Such agents solve
constrained optimization problems, balancing their users' desires
with hard, externally-imposed constraints. In particular, a large
number of outcomes (complete assignments to the problem
variables) might be feasible within a problem's hard constraints,
so the task of the cognitive-support agent is also to help find an
outcome that is (among) the best.

Such constrained optimization problems can be broadly divided

Cite as: Generalized Solution Techniques for Prefence-Based
Constrained Optimization with CP-nets, Boerkoel, Durfee and
Purrington, Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10-14, 2010, Toronto, Canada, pp. 291-298
Copyright © 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

291

into two categories—those where the preference and constraint
representation are coupled and those where the representations
remain decoupled. Coupled approaches with quantitative
preferences generally model preferences as —soft” constraints, and
have included approaches such as weighted CSPs [1], fuzzy CSPs
[8] and temporal CSPs [5]. Similarly, Max-CSP (maximizing the
number of satisfied constraints) is a common qualitative, coupled
representation.

Decoupling has the advantage of saving the user the burden of
expressing what is possible, allowing her instead to describe only
what she wants. Product configuration offers one example of this:
a vendor knows what products can be built, while the shopper
knows what he or she wants to buy. Similarly, people with
cognitive deficits might have clear preferences about their daily
activities, but rely on others (such as caregivers) to keep track of
constraints (such as medication regimens or television schedules).

Previous work by Boutilier ez al. [3] has described a decoupled
approach that models users’ preferences compactly and
qualitatively using CP-nets. Introduced more formally in Section
2, CP-nets are attractive because of their relative ease of
elicitation [4]. In addition to describing the representation,
Boutilier ez al. specified a particular algorithm for solving the
constrained optimization problem, proved its correctness, and
demonstrated that, in some sense, the optimization problem is no
harder than finding any solution to the underlying CSP.

This paper’s contributions are (1) to generalize those prior
insights into a versatile, parameterized family of algorithms for
solving decoupled constrained optimization problems, (2) to
evaluate the strengths and limitations of notable members of that
family, and (3) to utilize those results to create novel hybrid
techniques that can flexibly trade off solution quality and time.
We begin (Section 2) by summarizing the separate qualitative
preference optimization and constraint satisfaction problems and
their solution techniques, and illustrate an example application
that involves solving both problems simultaneously. In Section 3,
we describe our parameterization of a basic CSP search
framework to encompass a family of algorithms that includes
Boutilier ez al.’s specific case, and we evaluate, both empirically
and analytically, the solution methods that arise at the parameter
boundaries, as well as Boutilier er al.’s approach and other
variants that the parameterization supports. We then, in Section 4,
show how our more generalized framework can easily support a
hybridization of techniques to achieve boundedly-approximate
optimization faster, as well as —anytime” behavior. We summarize
our results and describe future directions in Section 5.

2. BACKGROUND

We briefly introduce a simple constrained optimization problem
that we will use to illustrate key concepts, and then summarize the
CP-net formalism and the basic CSP search formulation that
comprise the components of the decoupled constrained
optimization problem.

2.1 A Simple Example

Consider the example problem in Figure 1 (left). Ann has three
different objectives to complete between 8am and noon: exercise,
get an errand done, and recreate with friends. Ann may have one
or more choices for how to meet each objective. For example, she
could play cards or scrap-book for recreation, swim or bike for
exercise, and go to the bank or the store for her errand. She
cannot perform two activities at the same time, and each activity
has its own duration and may need to occur during restricted
intervals of time. For example, going to the bank is a short errand
but must happen during —banker’s hours” while going to the store
takes longer but the store never closes. Similarly, swimming tires
her out faster than biking, but the pool hours are more restrictive.
Thus, only some combinations of activities to meet her objectives
will be schedulable. Finding a feasible combination involves
solving a constraint satisfaction problem.

Ann also has preferences about how she accomplishes each of her
objectives. For example, all else being equal, Ann prefers biking
to swimming. If Ann bikes, she prefers to be on her feet less time
by going to the bank, but if she swims then she prefers going to
the store. Finally, Ann prefers to scrap-book if she visited the
store (for supplies). Notice that Ann’s preferences over some
choices are conditional on what other choices have been made.
Capturing such conditional preferences is what CP-nets do well.

2.2 CP-Nets

Briefly, CP-nets [2] are a compact, graphical representation of a
user's qualitative ceteris paribus preferences, very similar in
structure to Bayes-nets. Variables are arranged in a directed
graph, and each variable is accompanied by a conditional
preference table (CPT) that specifies its associated preference
function, conditioned on the values of its parent variables. Ann’s
preferences from Section 2.1 are captured in the CP-net shown in
Figure 1 (left). Further, (acyclic) CP-nets induce partial ordering
over all outcomes; the induced partial order for the CP-net shown
in Figure 1 (left) is shown in Figure 1 (right), where an arrow
from outcome O/ to O2 indicates O/ is strictly preferred to
(dominates) O2. Since preference is transitive, the outcomes in
Figure 1 (right) go from most preferred (at the top) to least
preferred (at the bottom). The pair of outcomes <Bike, Store,
Cards> and <Swim, Store, SBook> are incomparable since neither
dominates the other.

Note that the number of outcomes is combinatorial in the number
of CP-net nodes. Thus, while queries about outcomes can easily
be carried out in the induced outcome graph, some outcome
queries can be answered much more efficiently using the
exponentially smaller CP-net. For example, preferential
optimization is simple and efficient: the optimal outcome is found
by assigning each CP-net variable (in topological order) to its
most preferred value given its parents, with no need to backtrack.
(This is called the forward-sweep algorithm [2].) In Figure 1
(left), the optimal outcome is thus Bike (unconditionally), Bank
(given Bike), and Cards (given Bank), as confirmed at the top of
Figure 1 (right). If a variable has an exogenously assigned value,

292

then that value is assigned when the variable is reached. For
example, if Ann’s bike has a flat tire, her most preferred outcome
under this constraint is <Swim, Store, SBook>, as again can be

confirmed in Figure 1 (right).
Bike, Bank,
Cards
Bike, Bank,
SBook
Bike, Store,
SBook

Ann-Exercise
Swim, Bike}

Bike:
Ann-Errand "\ | Bank > Store
Bank, Store Swim: Bike, Store, Swim, Store,
’ Store > Bank Cards Sbook

Ann-Rec Store: -

SBook > Cards Swim, Store,
{Cards, ’ Cards
SBook Bank:

Cards > SBook

Swim, Bank,
Cards
Swim, Bank,
SBook

Figure 1. An example CP-net (left) along with its induced
preference graph (right).

This paper also exploits the efficiency of an ordering query: if O/
is orderable over 02, it means that O2 cannot be strictly preferred
to OI based on the information in the CP-net. We equivalently say
that O is non-dominated by O2. The algorithm for deciding
ordering queries compares outcomes O/ and O2 on the basis of
the first variable ' (in some topological order that respects the
CP-net partial order) that has a different value in O/ and O2. The
outcome in which the value of V' is more preferred is orderable
over the other. For some pairs of outcomes, it is possible to
determine that O/ is orderable over O2 for some topological order
and O2 over O] for a different order. More generally, orderability
is only determinable in one direction. In the running example, if
01 is <Bike, Store, Cards> and O2 is <Swim, Store, SBook>,
then the ordering query only confirms that O/ is orderable over
02 and not the other way around.

As we shall see, if all we care about is finding some feasible
outcome that we are sure is not dominated by any other feasible
outcome, then ordering queries suffice. That is, for a particular
constrained optimization problem, there might be a sizable set of
outcomes O* that are non-dominated by any other feasible
outcomes. For this paper, as in the earlier work of Boutilier et al.,
we consider any outcome O in O* to be a valid solution to the
constrained optimization problem.

2.3 Constraint Satisfaction Problems

Like a CP-net, a constraint satisfaction problem (CSP) is defined
in terms of variables and their possible values. Unlike CP-nets
where any combination of assignments (outcome) is possible
though not necessarily preferable, CSPs impose constraints on the
assignments of values to variables such that assignments
(outcomes) that violate constraints are impermissible (infeasible)
as solutions. We have already seen a simple example of this,
where the CSP imposes a constraint that Ann-Exercise cannot be
assigned —bike” (because of the flat tire), essentially removing
from Figure 1 (right) all outcomes that involve —Bike”, and
leading to a different preferred outcome than if the constraint did
not exist.

Constraints can arise for a variety of reasons. In our running
example, for instance, the constraints can involve timing (e.g., the
bank’s hours, the amount of time needed to shop) or other kinds
of dependencies (e.g., scrapbooking depends on having gone to
the store). While there are some interesting challenges in solving
problems with temporal and non-temporal constraints [7], for this
paper we will simply assume that there are some combinations of
variables’ values that are forbidden. Thus, solving a CSP involves
searching through possible variable assignments, pruning
assignments that violate constraints, to find one or more
assignments satisfying all constraints.

More generally, the canonical technique for solving CSPs
alternates between 1) propagating the effects of constraints to
prune the search space and 2) making tentative assignments to one
or more variables once all such propagation has been exhausted. If
it reaches a state where all variables have been assigned, then it
returns that solution. On the other hand, if the search space
becomes empty, the process backtracks to some previous tentative
assignment(s), and tries something else. Ifit ever gets to the point
where it has backtracked to and exhaustively tried all of the
possible tentative assignments, it terminates and indicates that the
problem is unsatisfiable.

Of course, how efficiently the search finds a solution can depend
on making good tentative assignments. Typical CSP heuristics
traditionally attempt to assign variables in ways that will have the
best chance of leading to a complete satisfying assignment and,
when unsuccessful, will prune the greatest amount of the search
space. As we shall see, if the problem is not only to find a
satisfying solution, but in fact to find a most-preferred satisfying
solution, then different heuristic decisions might prove more
suitable.

3. Decoupled Constrained Optimization
Constrained optimization focuses on the problem of finding the
—best” satisfying solution to a CSP, for CSPs that have multiple
satisfying solutions. In our running example, the constraint that
Ann-Exercise cannot be —Bike” still leaves 4 possible outcomes;
we want an algorithm that (efficiently) finds the best of them.
While in this simple case we could do so with the CP-net
preferential optimization algorithm, more generally this will not
suffice because constraints can apply to combinations of
variables.

As mentioned in Section 1, one way of solving constrained
optimization problems is to treat preferences as -soft” or
—weighted” constraints. As a simple example, given the
preferential ordering shown in Figure 1 (right), we could add to
the CSP a set of weighted constraints, such as a constraint that the
complete assignment be <Bike, Bank, Cards> with weight 7, that
it be <Bike, Bank, SBook> with weight 6, and so on down the
graph. Then, using any of several algorithms (for example [1]),
this weighted CSP (where the hard constraints have infinite
weights) could be solved for the assignment that minimizes the
summed weights of violated constraints. Since in our example
case only one of these weighted constraints can be satisfied, the
solution returned must be the most preferred complete
assignment.

This simple example involves introducing exponentially (in the
number of variables) many weighted constraints. Typically,
coupled approaches exploit factored preferences, where the
strength of preference over the assignment of some subset of
variables is not conditioned on the assignments to other subsets.

293

However, as this example illustrates, when preferences are
strongly conditional (as in the example CP-net), a coupled
approach to constraint optimization can become unwieldy.

For this reason, as well as our previously-stated motivations (e.g.,
ease of preference elicitation, separation of knowledge that might
stem from different places), we pursue a decoupled paradigm
combining CP-nets and CSPs. In their groundbreaking work on
this paradigm, Boutilier et al. showed that performing a CSP
search, but assigning variables with respect to the CP-net structure
instead of using standard CSP heuristics, can find all non-
dominated (hence optimal with respect to the CP-net) variable
assignments [3]. The kinds of problems motivating our work are
similar, but we will be satisfied with finding just one non-
dominated feasible solution, since the CP-net provides no basis
for preferring any such solution over another.

Intuitively, CP-net-centric variable/value assignments will guide
search toward preferred solutions, but not necessarily toward
feasible solutions, while using CSP-centric heuristics will do the
opposite. Which of these will most quickly lead to finding a non-
dominated feasible solution (and knowing that it is non-
dominated) depends on the sizes of the spaces of feasible and of
non-dominated assignments. Therefore, we now turn to
introducing and evaluating a more flexible, parameterized
formulation that supports a family of possible heuristic methods
for solving the decoupled optimization problem. Our key focus in
solving general decoupled constrained optimization problems is
on how to blend reasoning about optimization with reasoning
about feasibility.

3.1 A Parameterized Formulation

Our more general formulation for decoupled -constrained
optimization involves three parameters; we introduce a fourth, 7,
(for satisficing) later. The first is a step-size parameter, s, which
specifies how many variables the algorithm assigns between
propagation steps. The second parameter, /, determines which
variable assignment strategy is used to make those s assignments.
As we have already indicated, we consider assigning variables in
one of two ways: 1) using the CP-net to determine variable
ordering and the most preferred values (A=CP-net), and 2) using
the domain-independent CSP-based heuristic dom/deg, a
minimum-remaining-values-style heuristic (#~=MRV), which
selects the variable with fewest remaining values in its domain,
normalized by the degree of the variable. In this second method,
the chosen variable’s value is subsequently selected to minimize
conflicts with other variables’ domains. To break any remaining
ties, the MRV heuristic uses the CP-net heuristic, and vice versa.
Finally, the third parameter, a/l, is a Boolean indicating whether
all solutions (or just the first) should be returned.

The workhorse algorithm, SolveCSP, is summarized in simplified
form in Figure 2. We will shortly describe possibilities for the
subroutine PropagateConstraints. If the CSP is unsolvable (some
variables have no values remaining in their domains), then the
procedure returns (triggering a backtrack). If the CSP has a single
consistent value assignment for every variable, then this
assignment is returned. Otherwise, the assignment heuristic 4
builds a new assignment of s variables. The SolveCSP routine is
then called recursively on a CSP containing this assignment of
variables (CSP’). If CSP’ returns an assignment, this solution is
returned unless a/l solutions are requested. Otherwise (if no valid
assignment was found or if all solutions were requested),
SolveCSP is then called on a CSP preventing this assignment of

variables (CSP’’), and the result of SolveCSP is unioned with the
current (possibly empty) set of results, and returned.

SolveCSP(CSP,s,h,all)

Inputs: CSP - a CSP instance, s - num vars to assign,
h - assignment heuristic, and all - a Boolean
indicating whether every or only first solution is
returned
Outputs:a

(possibly empty) set of variable assignments

PropagateConstraints (CSP) ;

if (3 veVariables(CSP) s.t. domain(v) = {})
return {1},
else if (¥ veVariables(CSP), |domain(v) |=1)

return {Assignment (CSP) };
else

newAssign € {};

for i=1 .. min(s,NumUnassignedVariables (CSP)
Variable V € h.chooseNextVariable (CSP);
Value v € h.chooseNextValue (CSP,V);
newAssign € newAssign U {V=v}

CSP’ €& CSP + newAssign

result € SolveCSP(CSP’,s,h,all);

if (result # {} & !all
return result;

CSP’’ & CSP + createNoGood (newAssign) ;

return solveCSP(CSP’’,s,h,all) W result;

Figure 2. Parameterized Formulation.

3.2 Boundary Cases

There are two distinct parameterizations that result in familiar
algorithmic variations that serve to bound the space covered by
the general framework. The first is to solve the underlying
constraint satisfaction problem entirely, enumerating all feasible
assignments (this corresponds to parameters of s=1, ~=MRV, and
all=True), and performing ordering queries (Section 2.2) over
them to find a non-dominated assignment. Thus, with this
heuristic search the recursion in SolveCSP continues to find all
assignments. The other is to solve the problem from the other
direction (parameterized by s=|V|, h=CP-net, and all=False),
where assignments are generated in descending order of
preference until the first feasible assignment is found. The
framework’s underlying (depth-limited, backtracking) search
procedure coupled with the CP-net heuristic ensures that complete
assignments are generated in non-increasing preference order (that
is, an order consistent with the partial order over induced
outcomes described in Section 2.2). Hence, the first feasible one
must be non-dominated, so with this heuristic the recursion in
SolveCSP ends with the first feasible assignment found. For ease
of description we refer to these parameterizations as CSP-first
and Pref-first, respectively.

We expect Pref-first to perform very well when problems are
relatively under-constrained. For example, in the simple running
problem from Section 2.1, if there are no constraints, then Pref-
first amounts to simply running the forward-sweep algorithm
(Section 2.2) and then confirming the assignment is feasible. Pref-
first’s performance will, however, worsen rapidly as problems
become more difficult. Examining the outcomes in preference
order is, from the perspective of the CSP, equivalent to blind
chronological backtracking, and thus is more prone to degradation
when infeasible assignments involve variables occurring near the
root(s) of the CP-net. For instance, in the simple problem of
Section 2.1, if Ann-Exercise is constrained to not be assigned
—bike” (due to the flat tire), the Pref-first search would generate 5
complete assignments, the fifth (<Swim, Store, SBook>) being the
first feasible assignment.

294

In contrast, we would expect the performance curve for CSP-first
to mirror that of Pref-first, performing well on hard problems, but
worse on easy ones. In the running example, if Ann-Exercise
cannot be bike, then the MRV heuristic would immediately prune
out the infeasible half of the assignments and only consider the 4
remaining ones. If there were even more constraints, they would
whittle the candidates down even further, making CSP-first even
faster. But if there were no constraints, CSP-first would generate
all 8 assignments: CSP-first generates feasible assignments in an
order uncorrelated with preferences, and so the non-dominated
solution(s) cannot be identified until all feasible assignments are
enumerated and compared.

The discussion so far has ignored subroutine
PropagateConstraints (in SolveCSP, Figure 2). Modern CSP
search algorithms actually tend to incorporate powerful forward-
checking that enables them to prune away portions of the search
space when constraints dictate [9]. Such techniques can benefit
both CSP-first and Pref-first approaches, in both cases removing
values from unassigned variables’ domains that are inconsistent
with constraints associated with values assigned to the variables
so far. In our running example, for instance, forward-checking
could immediately remove -Bike” from the Ann-Exercise
variable’s domain (given the unary constraint that rules it out),
such that Pref-first could immediately skip over the infeasible
outcomes, more efficiently finding the most-preferred feasible
solution.

the

We perform our empirical validation using an off-the-shelf,
forward-checking, constraint satisfaction solver called €SP for
Java” (CSP4J) [9]. We also take advantage of an existing random
problem generator [10]. One of the generator’s parameters, p,
specifies the probability that each tuple of values is excluded as
being invalid for each n-ary constraint, and is a rough measure of
how constrained individual problem instances are. We generate
random CP-networks by adapting a Bayes-net generator available
from the University of Sao Paolo Decision Making Lab
(http://www.pmr.poli.usp.br/1td/).

We generated performance curves over 100 randomly generated
problems, each problem containing 35 constraints and 10
variables with 3 values in each variable’s domain, for each value
of the difficulty parameter p in increments of 0.05. Throughout
this work, to enhance the clarity of our results, we present timing
results as a sum rather than an average. The results are closely in
accord with our expectations. Figure 1 shows the mirror-image
exponential curves, with a distinct cross-over point as we move
from less-constrained to more-constrained problems, along with
an -Interleaved” curve, which we explain shortly. We observe that
these naive approaches partition the problem space into two
regions—a lightly constrained region in which Pref-first is the
superior choice, and a highly-constrained region in which the CSP
forward checking allows CSP-first to perform better.

3.3 The Interleaved Approach

The mirror-image performance curves for our two boundary
approaches suggest that we are likely to benefit from hybridizing
the two algorithms by interleaving constraint propagation and
preferential reasoning. In terms of our framework, we set s=1,
h=CP-net, and all=False, so that once constraint propagation ends
and tentative assignments must be made, SolveCSP (Figure 2)
invokes the CP-net to select and assign only one variable. The CP-
net heuristic chooses a variable with no unassigned parents, and
picks the most preferred value from among those that remain in

the variable's domain, given the assignments that have already
been made to its parents. The resulting algorithm is essentially
isomorphic to that of Boutilier et al. [3], except that with
all=False, this instance of the algorithm terminates after finding
just one non-dominated solution rather than searching for all of
them. Boutilier e al. [3] show that in such an algorithm, outcomes
are considered in a preferentially non-increasing order. Thus, if
we care only to find any non-dominated solution, the interleaved
algorithm can safely terminate after finding the first feasible
solution. It is this fact that accounts for much of the algorithm's
performance advantage.

As expected, Figure 3 shows that the interleaved algorithm
combines the features of the boundary approaches in such a way
as to gain the benefits of each. Since the CP-net is used to order
variables, the search can stop after finding the first feasible
outcome, whereas a more CSP-centric search (CSP-First) must
find every feasible outcome. On the other end of the spectrum, the
interleaved algorithm compares favorably to Pref-first because
allowing constraint propagation between CP-net-based
assignments to remove infeasible values from variables’ domains
enables the algorithm to prune away large numbers of outcomes
that Pref-first would otherwise consider.

120
——
100 A { csp
\ —8— CP-Net
80 Interleaved

\
\

)

Time (seconds)
(o))
o

N
o

N
o
L

0 +m -

0 0.05 0.1 0.5 0.35 0.4

0.15 0.2 0.2,
Constrainedness (p)5

Figure 3. Performance curves for canonical approaches.

Figure 3 shows data generated from problems that were relatively
small in order to allow the exponential algorithms to run to
completion. These problems are not big enough for the interleaved
algorithm to take any appreciable time. Figure 4 shows the
performance of the interleaved algorithm on much larger
problems (50 variables, 5 values each, 180 constraints). It also
shows the performance of a traditional CSP search that uses CSP-
centric heuristics and halts when finding the first (not necessarily
optimal) feasible assignment. Again, to enhance the clarity of the
graph, each data point is the sum of the time required for 100
randomly-generated problems at each value of p.

Figure 4 shows that, in general, traditional MRV-based heuristics
outperform the CP-net interleaving heuristic in finding a feasible
assignment. However, unlike the interleaved algorithm which can
return the first assignment it finds (since it is, by definition, non-
dominated, and thus a member of the set of most preferred), the
MRV-based heuristic cannot provide any such guarantees about
the preferability of the first solution it finds. So preference
optimization must run MRV-based search to find and compare all
feasible solutions before terminating. Figure 3 shows this, where
finding the most preferred feasible assignment is always faster
using the interleaved algorithm. Figure 4 motivates our satisficing

295

approach (Section 4), since blending these two approaches can
speed solving when only approximate preferability suffices.

30
25
- Interleaved
220 - —
g —&— MRV
815
£
=10
5
o @ e
o I ~) < n ©
o o o o o o
Constrainedness (p)

Figure 4. Interleaved vs. Traditional CSP algorithm.

Our empirical evaluation of the interleaved algorithm
demonstrates that it is extremely fast at the ends of the problem
space (< .01 seconds on average), while requiring more time in
the region of the space that corresponds to a —phase transition”,
where the problems are most difficult. In addition, it is clear that
for a large region in the middle of the space, including the —phase
transition”, the interleaved algorithm substantially improves
performance over either of the boundary algorithms. The
remaining question, then, is about the relative performance near
the extremes of the problem space.

As we see in Figure 5 (generated on problems with 50 variables, 5
values each, and 180 constraints) on the hardest problems there is
never a case where CSP-first outperforms the interleaved
algorithm. At some point, problems become sufficiently
constrained that a single feasible assignment is implied by the
constraints. In such cases, regardless of the algorithm used, the
initial propagation step ends up solving the entire problem,
without ever needing to guess a tentative assignment, so the
algorithm never performs "search" proper. Thus, in the limit, the
performance curves for all algorithms converge to the same point.
Short of that point, however, the interleaved approach is faster.

1000
100 & === CSP-First
== Interleaved
)
c 10
]
S
Q
§ *
g 1
£
0.1 +
01 —mr"—m—m————————————— 77— 7— 17— T— 71—
n wn W W 1N 1 N 1 N N 0 N 10 N O B n WU
NN oSN ORNSAKNDIN g NSNS N N
o N L o v N o ™ X o X N o @
IS IS [S) S IS) IS}

Coonstrain%dness?p)

Figure 5. Most-constrained region of the search space.

The interleaved algorithm can be thought of as CSP-first that
replaces commonly-used variable ordering heuristics with an
ordering that is effectively random, in return for being able to stop
after finding the first solution. Although on very hard problems
using the CP-net variable ordering makes the interleaved
algorithm approximately 25-times slower than CSP-first at finding
some feasible assignment (Figure 4), the fact that CP-net ordering

guarantees that this first assignment is optimal, whereas CSP-first
must explore its entire search space, more than compensates for
CSP-first’s efficient pruning of its search space. In Section 4, we
discuss ways of realizing the performance benefits of heuristic
variable ordering while preserving the early-termination
properties of the CP-net ordering.

3.3.1 Correlated Problems

In many settings, such as in a setting with many competing
agents, preferable resources may be scarce in practice. While in
general, this paper focuses on the reasoning from the point of
view of a single, independent, self-interested agent, one way that
we have tried to make the random CSP instances better reflect
real, multiagent scenarios is to include a parameter corr that
represents the positive or negative correlations that constraints
tend to have with preferability. The way we incorporate corr is
simple: currently, the generator guarantees that the CSP instance
is feasible by first generating a guaranteed solution, or a full
assignment of values to variables, and then assuring that
subsequent constraints do not exclude any tuples that correspond
to this guaranteed assignment. When corr=0.0, there is no
correlation, and this guaranteed solution is chosen completely
randomly. When corr is positive, with probability corr, a variable
assignment is chosen that corresponds to the next assignment
suggested by the CP-net while building this guaranteed solution
(roughly analogous to an agent acting in the presence of other
cooperative, altruistic agents). When corr is negative, variables
are assigned to their least preferred value during the guaranteed
solution construction, with probability 1-corr (roughly analogous
to an agent competing with other agents).

Figure 6 presents a high-level view of how the CP-net curves shift
with different correlation values. ~ When there is positive
correlation, the CP-net curve grows much less quickly than
before. When correlation is 1.0, the first solution is guaranteed to
be feasible, and thus returns immediately. Since the correlation
does not affect the CSP heuristic (which generates a// solutions,
and sorts based on preferability), we use the correlation only for
analyzing the CP-Net vs. Interleaved crossover.

70
=4—CP-Net:-0.6
60 —
—8—CP-Net: 0.0 /
= 50 CP-Net: 0.6
2 /
S 40 /
Q
T 30 A
] / /./
= 20
" J‘/
O a y T - T T T
0 005 01 015 02 025 05 035 04

Constrainedness (p)

Figure 6. CP-net curves, shift as constraints are correlated
with preference.

We observe results similar to Figure 5 at the other extreme of
problem difficulty (where problems are extremely under-
constrained) in Figure 7 (again generated on problems with 50
variables, 5 values each, and 180 constraints). On the easiest
problems, it turns out that there is never a case where Pref-first
outperforms the interleaved algorithm, even with constraints
biased towards the CP-net (corr = 0.6). On problems without
meaningful constraints (when p=0, all tuples are included as valid

296

in all constraints), the two algorithms must exert identical effort;
visiting each constraint exactly twice (once for each variable
assignment of the two variables involved in the binary constraint).
However, as soon as the problem is constrained enough that Pref-
first might need to backtrack, the exponential cost of backtracking
outweighs the low likelihood of needing to backtrack. In contrast,
the interleaved algorithm detects constraint violations as soon as
they occur, and so when backtracking is necessary, in expectation,
an exponentially smaller number of variable-value combinations
must be tried.

We were surprised to see how quickly the interleaved approach
outperformed the CP-net on CSPs with positive corr settings. A
positive value means that a portion (in this case roughly 60%) of
variables in the guaranteed solution will be set in exact
accordance with the CP-net. Therefore, the worst-case backtrack
of the Pref-first approach on problems with positive corr=0.6 will
contain an expected 60% fewer variables, (which is amplified by
the exponential nature of backtracks). More realistically,
problems are more likely to have a negative corr value. For
example, resource constraints may dictate that preferable
resources are scarcer, and hence constraints will often bias against
preferable outcomes. While this clearly impacts Pref-first
negatively, as Figure 7 shows, the interleaved approach is fairly
robust to changes in corr values. This is important, since it
demonstrates that, even in more realistic problems where
structural correlations between preferences and constraints exists,
the interleaved approach continues to dominate the Pref-first
approach.

100

== Interleaved: -0.6 === Pref-first:-0.6

== nterleaved:0 == Pref-first:0
=@- Pref-first:0.6

=== Interleaved: 0.6
W N

=
o

Time (seconds)
[

o
=
I

0.01 T 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Constrainedness (p)

Figure 7. Least-constrained region of the search space.

3.3.2 Impact of Step Size

From experimentation, the interleaved approach also dominates
the Pref-first approach even if the high backtrack cost of Pref-first
is mitigated with a more conservative step size (1 < s < |[V]) and
problems are generated with a Pref-first bias (positive corr value).
Analytically, the worst-case complexity of the arc-consistency
algorithm used by the CSP4J solver (an AC-3 variant) is known to
be O(ed®) [9], where e is the number of constraints and d is the
size of the largest variable domain, while the expected-case
complexity is much less than this. Loosely speaking, AC-3 is
applied every time search changes the domain of a variable, or
O(a + b) times where a is the number of variable assignments and
b is the number of backtracks. Assigning multiple variables at a
time helps mitigate the number applications of the AC-3
algorithm during search, O(a/s); however, it does so at the cost of
increasing the number of backtracks necessary when a poor
assignment is identified during search, O(bds). Thus, although

backtracking occurs less frequently on even the most under-
constrained problems, in expectation, the exponential (in d)
increase in AC-3 applications outweighs the saved AC-3
applications during the assignment phase of search. In fact, the
AC-3 algorithm exploits the sparseness of the constraint graph,
avoiding its worst-case complexity, and in turn, negating most of
the benefit, O(a/s) vs. O(a), of processing multiple variable
assignments at once. Additionally, we found that even a dynamic
adjustment strategy, which immediately regressed to a step size of
1 when encountering infeasibility, failed to outperform the
original, interleaved algorithm, in the space of problems we
explored.

4. A SATISFICING VARIANT

As shown in Figure 4, there is a computational cost to assigning
variables in CP-net order instead of using a CSP-centric variable-
ordering heuristic. To combat this cost, we add an additional
parameter to our formulation that allows users of our decoupled
constrained optimization techniques to gracefully trade optimality
for efficiency. This parameterization also leads naturally to an
anytime algorithm.

4.1 A Satisficing Parameterization

So far, the parameter /# has statically dictated which variable
assignment heuristic to use. However, /# could be determined
dynamically during search by introducing a satisficing parameter ¢
that corresponds to a user-specified satisfaction threshold. Values
of ¢ are given between 0 and 1, and describe how close the user
wants the returned solution to be to a non-dominated feasible
assignment. Specifically, ¢ describes the proportion of all
outcomes (whether feasible or not) that 1) may dominate a
returned outcome O while 2) not dominating an optimal solution
O*, such that O is accepted as a satisfactory solution. So, a value
of +=.25, for example, means that for any outcome O returned by
the algorithm, less 25% of all outcomes represent potential
improvements over O.

For any partial assignment pa, Purrington and Durfee [6] showed
how the CP-net semantics may be used to quickly determine a
lower and upper bound, 7, and #; respectively, on the rank,
expressed as a proportion of the entire assignment space, achieved
by any extension of pa to a full assignment. When search
decisions are made optimally, 7; doubles as an upper-bound on the
rank of O*, and thus the difference (¢, — #;) is an upper-bound on
the difference in rank between optimal solution O* and any
extension of pa to a complete assignment.

From this, the satisficing algorithm follows in a straightforward
way. We assume that the user specifies the satisfaction threshold ¢
as an algorithmic parameter. Then, after any variable domain
change is propagated, the current lower and upper bound on
satisfaction, #; and 7, are updated. If (¢, - #,) > ¢, the next variable
is chosen in the order specified by the CP-net (4=CP-Net, as with
the simple interleaved algorithm). Since all variables are assigned
optimally with respect to the CP-net until the (7, - #,) > ¢ condition
is violated, 7, represents an upper-bound on the rank of an optimal
assignment O*. And since #; represents the lower-bound ranking
of any completion of the current partial assignment, when (7, - #)
< t, any feasible extension of the current partial assignment is
guaranteed to be separated from an optimal assignment by less
than 1007% of possible assignments, so the remaining variables
can be assigned in MRV order (h~=MRV), ignoring the user’s
preferences.

297

To illustrate, consider again the simple running example (Section
2.1). Let us say that the user (Ann) is easily satisfied, only caring
that the outcome assignment is within 50% of the best feasible
assignment. The CP-net will be used for the first assignment,
assigning —Bike” to -Ann-Exercise.” The lower bound of any
complete assignment building from this partial assignment is 5/8
(to confirm this, in Figure 1 (right) the worst outcome with Bike”
is no worse than 5 out of the 8 outcomes). Since (7 - #7) = (1-
.625) < .5, the satisficing variant shifts to the CSP-centric (MRV)
heuristic to return whichever feasible completion to the
assignment is easiest to find. Similarly, had -Bike” been
unavailable, the CP-net heuristic would have chosen —Swim” and
then the CSP-based heuristic would have taken over since the best
possible outcome would now be better than 3/8 of the outcomes,
which is less than 0.5.

This satisficing algorithm should be no slower than the
interleaved algorithm. When =0, (#; - #;) can never fall beneath ¢,
so the algorithm is just the interleaved algorithm. When #=1.0, any
partial assignment achieves the threshold, so the algorithm just
returns the first outcome found using MRV, which we showed in
5 to be up to about 25 times faster than the interleaved algorithm
for this space of random problems. Finally, for values of ¢
between 0 and 1, the algorithm assigns some, but not all, variables
in MRV order, which we expect to prune more of the search space
than using the CP-net order, though the degree of savings
available will depend on the specifics of the problem.

We verified our expectation by running 100 random problems
using 50 variables with domain size of 5, using linear CP-nets for
ease of implementation. For these experiments, we fixed p = .275,
which corresponds to a portion of the problem space where
problems were empirically determined to be difficult. We
decreased satisfaction threshold 7 exponentially from 1.0 until the
solutions were indistinguishable from those of the interleaved
algorithm. As we have observed, the extreme points of 7=1.0
corresponds to pure MRV (stopping after one solution), and
approaches pure CP-net-order interleaving as ¢ decreases. We
show the results in Figure 8, summing the running time for the
100 problems for the sake of clarity. As a reference, the
interleaved algorithm takes a sum of 24.8 seconds when run on
these same 100 problems.

30

25 1 —e—searchTime (seconds) j
20 - =M Avg.Potential Quality Loss (%)

15

10

. /_..4-4""

0 —Mﬁmmm
NN NN NN N R R R R
RRRNREAREND \xls\\us\“ 0\5\“\&\5\”0\5\“?\5\“
Satisfaction Threshold (t)

Figure 8. Search time and average potential quality loss vs.
satisfaction threshold.

SNV ISRV SN L
\x\(’\h \&\S\h \xlf’\ls

These results are in keeping with our expectations. For these
problems, we observe a performance improvement of
approximately 25-fold by using MRV instead of CP-net ordering
(comparing =1 to #=0). Furthermore we see algorithmic speed
degrade relatively smoothly as # decreases, and the algorithm

behaves more and more like CP-net. It is important to note that
we allowed the CP-net heuristic to break any ties encountered by
the MRV variable and value ordering heuristics, leading to
assignments that are separated from the optimal solution by an
average of just under 12% of the all possible assignments, even
when traditional MRV is used exclusively (+=1.0). The key
observation is that this margin decreases rapidly as ¢ approaches 0,
allowing users with modest concessions on quality (within 1% of
optimal) to solve problems an order of magnitude more quickly
than the interleaved approach. While the actual quality loss may
be affected when problem constraints are correlated with
preferences, the satisficing algorithm is invariant to this
correlation, since constraint propagation will simply eliminate the
highly preferable, but infeasible results from consideration.

4.2 An Anytime Algorithm

Figure 8 shows that optimality can be flexibly traded for run-time
efficiency, naturally leading to an anytime extension to the basic
satisficing algorithm. Anytime behavior can be achieved simply
by recording the value #yzy = (fy - 1), as soon as the (fy - 1;) <t
condition is met. Thus, an anytime algorithm might first find any
solution using MRV (#=1.0). This initial solution has some
corresponding #yg value, which can be used as the input
parameter for the next iteration of the algorithm by restarting the
algorithm with (/=tygy). Eventually, this algorithm will terminate
with an iteration that degenerates to the interleaved algorithm.
Figure 8 shows what amounts to a first derivative of such an
approach. While this approach is clearly slower at finding the
optimal solution than the interleaved algorithm, it is capable of
impressive anytime performance.

We can also use the #ygy value that we compute to direct a
branch-and-bound-style search. Once one complete solution is
found, along with a corresponding #ygy value, the search can
continue, pruning the search space of branches that cannot
possibly meet the new #ygy threshold of the best solution
identified so far. Although this strategy naturally avoids
duplicated search effort, immediately backtracking to the point in
the search where the (7 - #;) < ¢ condition was first met can
further improve performance. Backjumping to the point allows
the CP-net heuristic to pick up where it left off, optimally guiding
the search process and avoiding a potentially large amount of
backtracking over variables that, due to the nature of CP-nets, are
unlikely to highly impact solution quality.

5. CONCLUSION

This paper makes several novel contributions towards solving
decoupled constrained optimization problems. First, we offered a
simple parameterization to generalize the traditional CSP
algorithm. Second, we empirically demonstrated that approaches
within this parameterization, including two boundary approaches,
are dominated by an interleaved approach similar to [3], which
had previously not been evaluated empirically. Additionally, we
showed that adjustments to the step-size parameter s offered no
improvement over the interleaved approach. In order to recover
some of the loss in expected search efficiency accrued by
replacing CSP-centric variable and value ordering heuristics with
CP-net based ones, we introduced a satisfaction threshold 7 that
we showed flexibly trades optimality for search efficiency, and
also enables the creation of an anytime algorithm.

This paper provides a parameterization that is useful for
evaluating future work in decoupled constrained optimization. In
fact, we have been applying this parameterization to solving CSPs
involving continuous variables, called HSPs [7], for use in
assisting people with cognitive difficulties to manage their
schedules. To our knowledge, algorithms for such problems have
only been analyzed in a coupled setting [5]. Using the HSP
framework, our parameterization correctly identifies the relevant
questions: how do we make search decisions (%), how frequently
do we interleave constraint processing with optimizing (s), and
can we dynamically trade optimality for efficiency (7).

6. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments and
suggestions. The work reported in this paper was supported, in
part, by the National Science Foundation under grant 11S-0534280
and by the Air Force Office of Scientific Research under Contract
No. FA9550-07-1-0262. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF or
United States Air Force.

7. REFERENCES

[1] Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Shiex, T.,
& Vertaillie, G. 1999. Semiring-based CSPs and valued
CSPs: Frameworks, properties, and comparison. Constraints,
4(3) (1999) pages 275-316.

[2] Boutilier, C., Brafman, R., Domshlak, C., Hoos, H. and
Poole, D. 2004. CP-nets: A tool for representing and
reasoning about conditional ceteris paribus preference
statements. JAIR 21 (2004), pages 135-191 .

[3] Boutilier, C., Brafman, R. 1., Domshlak, C., Hoos, H. and
Poole, D. 2004. Preference-based constrained optimization
with CP-nets. Computational Intelligence, 20(2) (2004),
pages 137-157.

[4] Koriche, F. and Zanuttini, B. 2009. Learning Conditional
Preference Networks with Queries. In [JCAI 2009, pages
1930-1935.

[5] Peintner, B., Moffit, M. D., and Pollack, M. E. 2005.
Solving Over-constrained Disjunctive Temporal Problems
with Preferences. In ICAPS 2005, pages 202-211.

[6] Purrington, K. and Durfee, E. H. 2007. Making social
choices from individuals' CP-nets. In A4 MAS 2007, pages
1122 - 1124.

[71 Schwartz, P. 2007. Managing Complex Scheduling
Problems with Dynamic and Hybrid Constraints. PhD. Diss.,
CSE., Univ. of Mich., Ann Arbor (2007).

[8] Schiex, T. 1992. Possibilistic constraint satisfaction, or -How
to handle soft constraints.” In UAI 1992, pages 269-275.

[9]1 Vion,J. 2006. CSP4J: a Black-box CSP Solving API for
Java In. Proc. of the 2nd International CSP Solver
Competition (2006), pages 75-88.

[10] Xu, K, Boussemart, F. Hemery, F. Lecoutre, C. 2007.
Random constraint satisfaction: Easy generation of hard
(satisfiable) instances. Artificial Intelligence 171 (2007),
pages 514-534.

